Einsatzbeispiele für KI in der Finanzbranche
Wie so oft in der IT steht und fällt der Erfolg einer neuen Technologie mit den konkreten Einsatzszenarien. In Gesprächen mit Softwareanbietern hat Forrester Research fast 70 solcher "Use Cases" identifiziert, die nicht nur für Finanzunternehmen interessant sein dürften. Sie lassen sich in vier Kategorien unterteilen:
Analysieren von Kundendaten und Kundeninteraktionen
Viele Softwarehersteller haben bereits KI-gestützte Analysefähigkeiten im Portfolio, mit deren Hilfe Kunden ihre Umsätze steigern können. Dazu gehören unter anderem Churn-Analysen (Kundenabwanderung), individuelle Absatzprognosen oder personalisierte Preise. SAP etwa wirbt im Zusammenhang mit seiner Leonardo-Produktpalette für seine "Next-best-offer"-Funktionen, mit denen sich Kundenwünsche voraussagen ließen. Das Ziel: Dem Kunden soll zu jeder Zeit das passende Produkt angeboten werden. Sopra Banking Software hat einen "Robo Loan Officer" entwickelt, eine Art virtueller Kreditberater, der mit Kunden in mehreren Sprachen via Text-Chat oder per Voice-Schnittstelle kommunizieren kann.
Der indische IT-Dienstleister Tata Consultancy Services (TCS) sieht Einsatzmöglichkeiten auch jenseits des klassischen Retail und Corporate Banking. Dazu gehöre beispielsweise der Bereich Algorithmic Trading, also der automatisierte Handel von Wertpapieren. Forrester rät Entscheidern im Anwendungsumfeld, ihre Softwarelieferanten nach solchen potenziell umsatzsteigernden KI-Lösungen zu fragen. Dabei sollten auch die konkreten Entwicklungs-Roadmaps der Anbieter auf den Tisch kommen.
- Oliver Bracht, Chief Data Scientist bei Eoda
"In der Frage der Akzeptanz von KI und Machine Learning ist die Varianz unter den deutschen Unternehmen sehr hoch. Einige stehen noch ganz am Anfang, andere sind schon weit vorangeschritten." - Robert Gögele, General Manager bei Avanade Deutschland
"Im Feld KI und Machine Learning können in Deutschland viele neue Jobs entstehen. Dafür brauchen wir aber einen Kulturwandel, in dem wir uns als Gesellschaft und im öffentlich Diskurs deutlich mehr den Chancen widmen, als uns hinter den wohlbekannten und legitimen Risiken zu verstecken." - Stefan Gössel, Partner bei Reply
"Im ersten Schritt geht es um die eigene Effizienz. Der wesentliche Treiber ist es jedoch, die Kundenbedürfnisse in den Mittelpunkt zu stellen, um neues Wachstum zu generieren." - Franz Kögl, Vorstand von Intrafind
"Unsere Kunden haben mit dem Thema AI keine Berührungsängste. Alle gehen das pragmatisch an: Business Case und Anforderungen definieren, dann für den Use Case die beste Kombination aus AI-Verfahren auswählen und die Machbarkeit testen." - Ronny Kroehne, Senior IT Architect bei IBM
"Wir reden immer öfter direkt mit den Fachbereichen. Da ist der Innovationsdruck am Größten." - Katharina Lamsa, Pressesprecherin für die Division Digital Factory bei Siemens
"Die zunehmende Digitalisierung ist ein wesentlicher Treiber für die Entwicklung und die Akzeptanz von KI und Machine Learning bei unseren Kunden. Insbesondere im Maschinenbau sehen wir Ansätze, sich mit diesem Innovationsfeld intensiv zu befassen. Darunter finden sich auch kleinere, sehr innovative Unternehmen, die das Zukunftspotenzial des Themas erkannt haben." - Markus Noga, Leiter Maschinelles Lernen, SAP SE
"Unsere Vision ist das intelligente Unternehmen. Dank maschinellem Lernen und natürlicher Sprachverarbeitung werden Softwaresysteme Mitarbeiter zukünftig in allen Routinetätigkeiten unterstützen und ihnen die Möglichkeit geben, sich auf kreative und strategische Aufgaben zu fokussieren. Wir treiben diese Entwicklung mit intelligenten Applikationen und Services voran und bieten Anwendungsmöglichkeiten für jeden Kenntnisstand." - Klaus-Dieter Schulze, Senior Vice President Digital Business Solutions bei NTT Data Deutschland
"Ich muss immer mit der Business-Frage anfangen, nicht mit der Technologie." - Max Zimmermann, Data Scientist von Lufthansa Industry Solutions
"Man muss die unterschiedlichen Bereiche Künstlicher Intelligenz definitorisch voneinander abgrenzen. Einfache Regressionsverfahren zum Beispiel genießen derzeit hohe Akzeptanz."
Kundenerfahrungen verbessern durch automatisierte Interaktion
Geht es um die Kundenkommunikation, sind Chatbots nicht nur in der Finanzbrache heute fester Bestandteil von KI-gestützten Lösungen. Neuere Ansätze gehen darüber hinaus. Der auf die Finanz- und Versicherungsbranche spezialisierte Anbieter Intellect Design Arena arbeitet an Systemen, die die Kundenerfahrung automatisiert verbessern können. Dazu versucht die Software situationsabhängig, die jeweils am besten passende Aktion zu identifizieren und greift dazu auch auf landes- und kundenspezifische Informationen zurück. Der Softwarekonzern Oracle verfolgt einen ähnlichen Ansatz. Ein intelligentes System könne beispielsweise maximal drei der wahrscheinlichsten Transaktionen oder auch Bildschirminhalte voraussagen, an denen ein bestimmter Kunde interessiert sei, werben die Marketiers. Dazu nutze das Programm eine umfangreiche Datenbank mit kundenspezifischen Informationen.
Nach Einschätzung von Forrester wagen sich bisher nur wenige Anbieter an das komplexe Thema der automatisierten Personalisierung und Optimierung von Kundenschnittstellen heran. Das aber werde sich ändern. Die "AI-powered CX Optimization" (CX = Customer Experience) stehe inzwischen auf der Roadmap vieler Anbieter. IT-Entscheider könnten davon ausgehen, dass derartige Fähigkeiten innerhalb der kommenden zwei Jahre auch in gängige Standardsoftware Einzug hielten.
Mehr Effizienz durch reduzierte Handarbeit
Robotic Process Automation (RPA) steht schon seit geraumer Zeit auf der Angebotsliste von Banking-Plattform-Anbietern wie EdgeVerve Systems. Hinzu kommen RPA-Spezialisten wie beispielsweise UIPtah. Die Potenziale der Künstlichen Intelligenz in Sachen Effizienz gehen über RPA hinaus. So argumentieren etwa Finastra und Temenos, KI könne Banken unterstützen, in traditionell wenig automatisierten Bereichen effizienter zu arbeiten. Als Beispiele nennen sie die Handelsfinanzierung (Trade Finance) und die Abwicklung von Konsortialkrediten (Syndicated Lending).
Weil es in solchen Bereichen häufig noch keine Standards gibt, könnten KI-gestützte Banking-Anwendungen dabei helfen, strukturierte und unstrukturierte Daten zusammenzuführen. Zudem wären sie beispielsweise in der Lage, noch fehlende Informationen oder Unterlagen im Zahlungsprozess zu identifizieren. Um Prozesse noch effizienter zu gestalten, sollten IT-Entscheider eng mit Fachabteilungen und Banking-Softwareanbietern zusammenarbeiten und "Quick Wins" identifizieren, rät Forrester.
Compliance-, Risiko- und Technologie-Management verbessern
In diese Kategorie fallen zwar vergleichsweise wenige Use Cases. Der wirtschaftliche Nutzen aber kann beträchtlich sein, was sich etwa am Beispiel der "False Positives" im Bereich Betrugserkennung zeigt. Solche fälschlicherweise als illegal oder verdächtig eingestuften Vorgänge können etwa bei der Fahndung nach Geldwäsche mehr als 90 Prozent der Fälle ausmachen, eine enorme Zeitverschwendung für die Ermittler. Die britische Großbank HSBC nutzt Künstliche Intelligenz, um die Anzahl der False Positives zu reduzieren und sich besser auf die wirklich Kriminellen konzentrieren zu können.
Vorteile kann Künstliche Intelligenz auch im klassischen IT-Management bringen. Der Finance-Spezialist EdgeVerve etwa nutzt KI-Funktionen in seiner Preventive-Maintenance-Lösung "Finacle Assure" für Finanzinstitute. Der Schwerpunkt liege dabei auf Prävention, so der Anbieter. Drohende Fehler oder Störungen im IT-Betrieb sollen frühzeitig erkannt und vermieden werden.