Der Einsatz von Künstlicher Intelligenz im Unternehmen verspricht Produktivitätssteigerungen, erhöhte Agilität und gesteigerte Kundenzufriedenheit bei verkürzter Time-to-Market. Dennoch ernten nicht wenige IT-Entscheider Misserfolg und Enttäuschung für ihre KI-Bemühungen: Wie eine IDC-Studie zeigt, endeten 28 Prozent aller KI- und Machine-Learning-Projekte in einem Fail.
Eine effektive KI-Strategie erfordert eine gewissenhafte Planung, sinnvoll definierte Ziele und vor allem Commitment von Seiten des Managements. Darüber hinaus gilt es allerdings auch, über gängige Fallstricke in KI-Initiativen Bescheid zu wissen und diese zu meiden. Wir haben in Kooperation mit einigen IT-Entscheidern sieben Gründe zusammengetragen, die ursächlich dafür sein können, dass Ihre KI-Strategie an die Wand fährt.
1. Unzureichendes Training
Den Bedürfnissen der Nutzer gerecht zu werden, ist eines der größten Hindernisse auf dem Weg zum Erfolg mit Künstlicher Intelligenz. Unternehmen haben die Aufgabe, ihre Mitarbeiter um Umgang mit KI-Lösungen zu schulen, ansonsten wird es nichts mit dem Skalieren. Dieser Überzeugung ist auch IT- und Technologie-Management-Professorin Chara Griffy-Brown: "Dabei geht es um weit mehr als nur Training. Es geht darum, die Policies auf den aktuellen Stand zu bringen und einen Business Support zu etablieren, der über technische Dienstleistungen hinausgeht."
Dabei sollte nach Meinung der Professorin jede KI-Initiative unter der Prämisse gestartet werden, dass Künstliche Intelligenz menschliches Zutun braucht, um zu funktionieren. "Diese Implementierung kann sich wesentlich diffiziler gestalten als die der KI selbst", so Griffy-Brown.
2. Inadäquate Governance
Ohne unternehmensweit greifende Governance-Standards, kann keine KI-Strategie - sei sie noch so ausgeklügelt - funktionieren. Scott Zoldi, Chief Analytics Officer beim US-Credit-Scoring-Provider FICO weiß, wie facettenreich solche Governance-Modelle ausgestaltet sein müssen: "Sie sollte das Konzept der Responsible AI und darüber hinaus auch gängige Deployment Practices berücksichtigen sowie spezifizieren, welche KI-Methoden zum Einsatz kommen. Zudem brauchen KI-Projekte einen unternehmensweiten Entwicklungsprozess, um sicherzustellen, dass dieser unter Einhaltung der Unternehmensstandards abläuft und nicht dem Kunstwerk einzelner Datenwissenschaftler unterliegt."
3. KI-Wertbeitrags-Missverständnis
Obwohl die Zugangsschranken zu KI immer weiter sinken, erkennen viele Anwender die möglichen ROI-Benefits nicht. Worauf es ankommt, hat Lan Guan, Senior Managing Director beim Beratungshaus Accenture, erkannt: "Künstliche Intelligenz darf kein Add-On sein. Es ist essenziell, KI in den Kern der Wertschöpfungskette zu integrieren. So wird Value Tracking mühelos, intuitiv und macht süchtig."
Eine Hürde ist für viele Unternehmen insbesondere, die ganze Bandbreite der möglichen KI Use Cases im Blick zu behalten. "Bei KI-Projekten im Enterprise-Umfeld ging es bisher vor allem um spezifische Problemlösungen und nicht unbedingt darum, wie die Technologie entlang der gesamten Wertschöpfungskette genutzt werden kann", ist Ravi Kumar, President beim IT-Beratungshaus Infosys, überzeugt.
4. KI - aber nicht überall
Damit Künstliche Intelligenz Mehrwert erzeugt, muss sie direkt in den betreffenden Geschäftsprozess eingebunden werden. Das erfordert nicht nur Veränderungen am Prozess, sondern auch an der Rolle, die der Mensch dabei einnimmt. Bei besonders repetitiven Tasks kann die KI den gesamten Prozess automatisieren und den Bedarf für menschliche Eingriffe komplett eliminieren. Diese Art der "human-less" Automation stellt einen wichtigen Benefit der Technologie dar, deckt aber nur einen Bruchteil der Möglichkeiten ab, wie Shervin Khodabandeh, Senior Partner und AI Co-Lead bei der Boston Consulting Group, weiß: "Wie wir aus unseren eigenen Forschungsinitiativen und Projekten mit Kunden wissen, wird Künstliche Intelligenz genutzt, um das Unternehmenswachstum anzutreiben, die Costumer Experience zu verbessern und Risiken besser zu managen."
Um das umzusetzen, sei es nötig, neue Modelle der Mensch-KI-Interaktion zu implementieren. Am Beispiel des Kundenservice verdeutlicht der Manager: "Es geht nicht nur darum, was die KI-Instanz leisten kann, sondern darum, wie der Mensch die Technologie nutzt, um die Kunden besser zu versorgen. Das kann nur gelingen, wenn im Unternehmen ein tiefgreifendes Verständnis der zugrundeliegenden Geschäftsprozesse verankert ist."
Da KI inzwischen zu einem IT-Buzzword geworden ist, ist Selektivität ein weiteres entscheidendes Kriterium. "Kein CIO will den KI-Zug verpassen. Aber all die Eile verleitet einige dazu, alle möglichen wunden Punkte mit einem KI-Pflaster versorgen zu wollen", berichtet Manjeet Rege, Direktor des Zentrums für Angewandte Künstliche Intelligenz an der Universität von St. Paul im US-Bundesstaat Minnesota. "Wir bekommen oft KI-Abteilungen zu Gesicht, die nicht besonders gut ins Gesamtgefüge der Business Units passen."
Rege empfiehlt daher, KI-Projekte für die ersten ein bis drei Jahre in den betreffenden Business Units zu verankern. So habe das KI Team ausreichend Zeit, die jeweiligen Einsatzmöglichkeiten zu ermitteln, während die anderen Geschäftsbereiche ihrerseits ein tieferes Verständnis für KI entwickelten.
5. Management- und Monitoring-Mängel
CIOs sind Experten, wenn es darum geht, 99,999 % Uptime zu liefern. Geht es um KI sollten die Entscheider ein ähnliches Level an Präzision walten lassen, meint Scott Zoldi: "KI-Modelle müssen performant arbeiten und brauchen ein durchgängiges Monitoring."
Einer aktuellen Corinium-Studie zufolge verzichten 67 Prozent der befragten Chief Data Analytics Officer darauf, ihre Modelle zu monitoren und gehen damit das Risiko ein, dass die Präzision leidet und Probleme wie Model Drift oder Bias auftreten. "Deployment und Monitoring von KI-Modellen ist ebenso wichtig - wenn nicht sogar wichtiger - als die Entwicklung des Modells selbst", ist Zoldi überzeugt.
6. Support-Ausfall von oben
Dass manche Senior Manager in Sachen Data Literacy Mut zur Lücke mitbringen, ist für CIOs nichts Neues. Es liegt deshalb an den IT-Entscheidern, den Einfluss und die Vorteile einer nachhaltigen KI-Strategie zu visualisieren und zu kommunizieren.
Wenn die Executive Sponsors nicht richtig priorisieren und innovieren, kann die KI-Strategie nicht skalieren, weiß Jerry Kurtz, Executive Vice President of Insights and Data beim Beratungsunternehmen Capgemini North America: "Wenn Unternehmen die langfristigen Vorteile ihrer kurzfristigen Investments nicht erkennen können, wird es schwierig, ein langfristiges Commitment sicherzustellen."
KI-Zweifler davon zu überzeugen, dass die Technologie erwiesenermaßen einen gewichtigen Wertbeitrag leisten kann, ist mitunter ein schwieriges Unterfangen - das weiß auch Kurtz. Er empfiehlt deshalb eine KI-Strategie und Roadmap zu entwerfen, die sowohl Daten als auch Use Cases beziehungsweise Priorisierungsprozesse einbezieht und die nicht-technischen Hürden für die Skalierung fokussiert.
7. Adoption-Management-Verweigerung
Widerstehen Sie der Versuchung, das komplette KI-Budget in Technologie zu pumpen. "Stattdessen sollten Sie lieber in Adoption Management investieren", rät Krishna Kutty, Managing Partner bei Kuroshio Consulting. "KI-Erfolg braucht die richtige Kommunikation, das richtige Training, die richtigen Workflow Redesigns und erfordert strukturelle Veränderungen".
Viele Unternehmen nähmen an, dass die Arbeit mit einem Investment in KI-Technologien und das zugehörige Data Management getan ist. Ein großer Fehler in den Augen der Beraterin: "Das Gros der Probleme entsteht außerhalb des Kern-IT-Teams. Die gesamte Organisation muss bei einer KI-Adoption mit einbezogen werden- von der Finanzabteilung über das Marketing bis hin zur HR."
Effektive CIOs würden deshalb auf Partnermodelle mit ihren C-Level-Kollegen setzen, um die Entwicklung einer ganzheitlichen KI-Strategie voranzutreiben und die Technologie zu skalieren, so die Expertin. (fm)
Dieser Beitrag basiert auf einem Artikel unserer US-Schwesterpublikation Network World.
- 1. Datenmangel
Datenprobleme gehören zu den häufigsten Gründen für das Scheitern von Artificial-Intelligence-Initiativen. Das belegt auch eine Studie des Beratungsunternehmens McKinsey, die zu dem Schluss kommt, dass die beiden größten Herausforderungen für den KI-Erfolg mit Daten in Zusammenhang stehen. <br /><br /> Demnach haben viele Unternehmen einerseits Probleme damit, ihre Daten richtig einzuordnen, um die Machine-Learning-Algorithmen korrekt programmieren zu können. Wenn Daten nicht richtig kategorisiert werden, müssen sie manuell richtig klassifiziert werden – was oft zu zeitlichen Engpässen und einer erhöhten Fehlerrate führt. Andererseits stehen viele Unternehmen vor dem Problem, nicht die richtigen Daten für das anvisierte KI-Projekt zur Verfügung haben. - 2. Training, das ins Leere läuft
Laut einer Untersuchung von PricewaterhouseCoopers verfügt mehr als die Hälfte der befragten Unternehmen über keinen formalen Prozess für das vorurteilsfreie Training von KI-Systemen. Schlimmer noch: Nur 25 Prozent der befragten Unternehmen würden demnach die ethischen Implikationen eines Artificial-Intelligence-Systems vor der Implementierung priorisieren. <br /><br /> Unternehmen steht eine Vielzahl von Bilddaten-Sets zu Trainingszwecken zur Verfügung – sowohl auf kostenloser als auch auf kommerzieller Basis. Dabei sollten Firmen allerdings unbedingt darauf achten, dass ein solches Datenset auch die für ihre Zwecke relevanten Daten enthält. - 3. Problemfall Datenintegration
In manchen Fällen ist nicht Datenmangel die wesentliche Hürde für den Einsatz von Künstlicher Intelligenz, sondern das genaue Gegenteil: zu viele Daten – an zu vielen Orten. <br /><br /> Solche Datenintegrations-Fauxpas können sich nachhaltig negativ auswirken. Dabei geht es nicht in erster Linie um technische Hürden, sondern beispielsweise darum, Compliance- und Datenschutzanforderungen gerecht zu werden. - 4. Datenunterschiede
Wenn Unternehmen für das Training von Artificial-Intelligence-Systemen nicht auf aktive, transaktionale sondern auf historische Daten zurückgreifen, entstehen Probleme. Denn ein System, das auf Grundlage eines historischen Snapshots trainiert wurde, wird im Zusammenspiel mit Echzeit-Daten nicht besonders zuverlässig performen. <br /><br /> Nach Ansicht von Andreas Braun, Managing Director und Partner bei der Boston Consulting Group, können Sie diese Problemstellung vermeiden, indem Sie Ihre Data Scientists aus dem Silo holen: Insbesondere wenn es um KI-Modelle geht, die mit Live-Daten arbeiten, bietet sich eine direkte Integration in die Produktionsumgebung an – diese geht im Regelfall auch wesentlich schneller vonstatten. - 5. Unstrukturierte Daten
Laut einer aktuellen Umfrage von Deloitte verlassen sich 62 Prozent der Unternehmen immer noch auf Spreadsheets – nur 18 Prozent profitieren bereits von unstrukturierten Daten wie Produktbilder, Audiodateien von Kunden oder Social-Media-Kommentare. Dazu kommt, dass viele der historischen Datensätze in Unternehmen den für den KI-Einsatz nötigen Kontext vermissen lassen. <br /><br /> Dabei kommt das Beratungsunternehmen auch zu der Erkenntnis, dass Unternehmen, die unstrukturierte Daten nutzen, ihre Geschäftsziele im Schnitt um 24 Prozent übertreffen konnten. - 6. Kulturelle Mangelerscheinungen
Daten außen vorgelassen, sind es vor allem organisatorische Herausforderungen, die dem Erfolg mit Künstlicher Intelligenz entgegenstehen. Die Mitarbeiter aus den Fachbereichen müssen direkt mit den Kollegen aus der Technik zusammenarbeiten und der übergeordnete Kontext sollte dabei stets im Fokus stehen.