Experten diskutieren Applied AI

KI - im Eiltempo zur Akzeptanz

31.05.2023
Von 
Iris Lindner ist freiberufliche Journalistin für Elektronik und Automatisierung.
Seit Monaten herrscht ein Riesenrummel um Künstliche Intelligenz. ChatGPT stärkt das Bewusstsein dafür, verschiedene KI-Modelle im breiten Stil zu nutzen.
Roboter mit Köpfchen: Künstliche Intelligenz ist seit Jahren auf dem Vormarsch - Unternehmen eröffnen sich zahlreiche neue Möglichkeiten.
Roboter mit Köpfchen: Künstliche Intelligenz ist seit Jahren auf dem Vormarsch - Unternehmen eröffnen sich zahlreiche neue Möglichkeiten.
Foto: Tatiana Shepeleva - shutterstock.com

Die Möglichkeit, künstliche Intelligenz (KI/AI) im Sprachbereich zu verwenden, existiert bereits seit mehr als einem Jahrzehnt. Kundenfeedback zu sortieren, um es in die entsprechenden Adressaten-Abteilungen weiterzuleiten oder E-Mails automatisch beantworten zu lassen - diese Methoden sind in großen Unternehmen schon stark verbreitet. In der breiten Masse jedoch hielt sich die Akzeptanz von Textverarbeitung mittels KI noch in Grenzen. Bis vor Kurzem: Seit ChatGPT für jeden kostenfrei verfügbar ist, ist KI in aller Munde.

Unumstritten hat dieses Sprachmodell großen Einfluss darauf, dass KI in der Mitte der Gesellschaft ankommt. Für die Experten der COMPUTERWOCHE-Diskussionsrunde zum Thema "Applied AI" ist ChatGPT kein reiner Hype, sondern eine Revolution - zunächst werden die Softwareentwickler von ihr profitieren, später dann alle. Sobald die Endanwender mit fertigen Lösungen konfrontiert werden, die direkt nutzbar sind, wird KI vermutlich auch schon nicht mehr als separates Thema wahrgenommen werden, sondern als in Office-Anwendungen oder Geschäftsprozessen integrierte Funktion. Entsprechende Entwicklungen finden gerade statt - und zwar in einer Innovationsgeschwindigkeit, mit der weder KI-Experten, noch Unternehmen und Gesellschaft umzugehen wissen.

Von der Skizze zum Prozess

Der KI-Markt ist derzeit stark in Bewegung - immer wieder kommen neue Modelle mit kommerziellen Lizenzen auf den Markt. Zudem erwecken die unterschiedlichsten Einsatzszenarien den Eindruck, als entstünde jede Woche etwas Neues. Natürlich stößt die Möglichkeit, Kommunikation und Sprache zu automatisieren und aus den Daten Content produzieren zu lassen auch bei CIOs und Business-Entscheidenden auf großes Interesse. Um aber von einer einfachen Lösungsskizze hin zu einem automatisierten, lebenden Prozess zu gelangen, sind lange Wege zu gehen, auf denen man die Unternehmen an die Hand nehmen muss.

Es geht dabei nicht nur darum, bei all den verfügbaren Foundation-Modellen den Überblick zu behalten. Die Herausforderung: Ein allgemein eingesetztes KI-Sprachmodell ist nicht auf Applikations- oder Branchen-spezifische Funktionen beziehungsweise Kontext hin trainiert. Die KI muss also je nach Anwendungsfall erweitert oder die Anwendung mit ihrer Hilfe neu erstellt werden. Doch weil gerade im Sprachbereich nur sehr wenige ihre Lösungen selbst bauen können, benögiten sie dafür gut ausgebildete Experten, die auf großen Foundation-Modellen Geschäftsprozesse adaptieren können. Für den Legal-Markt zum Beispiel gibt es bereits die ersten Startups, welche die Modelle um die speziellen Branchenthemen verfeinern.

Informationen zu den Partner-Paketen der Studie 'Applied AI 2023'

AI Act ist nicht die einzige Herausforderung

Auch wenn das Angebot, Startmodelle zu verwenden, zunehmend einfacher wird und in einem halben Jahr jeder - vom Java-Entwickler bis zum Datenbankexperten - zumindest die einfachen APIs verwenden kann, wird eine Vertikalisierung vor allem wegen der gewaltigen zukünftigen Herausforderungen elementar bleiben. Eine davon ist der AI Act, der spätestens 2025 in Kraft treten soll. Viele KI-Projekte werden nochmals auf den Kopf gestellt werden müssen, wenn festgestellt wird, dass es zum Beispiel ein CE-Zertifikat braucht und/oder komplett neue Prozesse, um die Lösung überhaupt noch betreiben zu können. Auch viele Datenschutzfragen sind ungeklärt.

Trotzdem haben - auch dank AI Act - gerade deutsche Unternehmen aktuell eine große Chance, KI-Vorreiter zu werden. Entsprechende Lösungen gibt schon viele, die auch nach AI Act funktionieren würden und sämtliche Vorgaben hinsichtlich Privacy, Security und Compliance erfüllen könnten.

Unternehmen müssen sich entscheidende Fragen stellen, um den Überblick über ihre KI-Projekte zu behalten:

  • Was ist das Anwendungsszenario?

  • Welche Daten liegen zugrunde?

  • Ist der Use Case sehr spezifisch?

  • Lohnt sich ein Finetuning eines Foundation-Modells überhaupt?

Klar ist: Um verschiedene Use Cases abzudecken, reicht es nicht, nur auf einem Foundation-Modell aufzubauen. Und so wird auch die Frage nach der Governance immer komplexer, um die Anwendung transparent und Entscheidungen letztendlich auch begründbar zu machen.

Menschen machen Fehler - KI auch

Bei allem Bedarf für technisches Know-how ist es ebenso wichtig, die KI-Projekte gemeinsam mit den einsetzenden Fachbereichen zu implementieren, um Nutzen und Grenzen der Technologie zu erkennen. Nicht zuletzt auch, damit die Erwartungshaltung der späteren Nutzer gleich von Anfang an eruiert werden kann. So sollten beispielsweise KI-gestützte Sprachmodelle gleich von Anfang an mit dem späteren Einsatzzweck entsprechenden, qualitativ hochwertigen Trainingsdaten gefüttert werden. Was qualitativ hochwertig ist, hängt häufig natürlich von einer subjektiven Beurteilung ab, was solch ein Projekt natürlich nicht einfacher macht.

Je mehr KI zum Einsatz kommt, desto mehr müssen sich alle Nutzerinnen und Nutzer gewisser Unwägbarkeiten respektive mathematischer Wahrscheinlichkeiten bewusst sein. Das, was technisch nicht lösbar ist, darf am Ende nämlich nicht auf den Menschen abgewälzt werden mit der Erwartung, dass er die einzige Wahrheit findet. Die Expertenrunde resümiert dazu: Wie sich die Akzeptanz falscher Ergebnisse von Sprachmodellen entwickeln wird, bleibt vor allem bei der Automatisierung von Prozessen in den Bereichen wie Verwaltung spannend, in denen unter anderem rechtskräftige Aussagen getroffen werden müssen.

Studie "Applied AI 2023": Sie können sich noch beteiligen!

Zum Thema Applied AI führt die COMPUTERWOCHE derzeit eine Multi-Client-Studie unter IT-Verantwortlichen durch. Haben Sie Fragen zu dieser Studie oder wollen Sie Partner werden, helfen Ihnen Regina Hermann (rhermann@idg.de, Telefon: 089 36086 161) und Manuela Rädler (mraedler@idg.de, Telefon: 089 36086 271) gerne weiter. Informationen zur Studie finden Sie auch hier zum Download (PDF).

Die Angst vor dem Innovationstreiber

Auch wenn es aktuell das dominierende Thema ist, steckt KI nicht nur in Sprachmodellen. Beispiele für die Möglichkeiten und Zuverlässigkeit Sensor-basierter KI-Systeme sind beispielsweise das autonome Fahren oder die industrielle Automatisierung in Produktion, Logistik und Infastruktur. Hier geht es um automatisierte Ressourcensteuerung in Fertigungsprozessen, die Überwachung des CO2-Footprints oder die Regelung des Lastverhaltens von Infrastrukturen bis hin zur Optimierung durch die Maschinen selbst.

Durch diese im Vergleich zu ChatGPT eher "stille Revolution" machen heute schon viele Unternehmen riesige Schritte nach vorne, gerade der deutsche Mittelstand ist bei seinen Anwendungsmöglichkeiten sehr innovativ. Allerdings liegen den meisten dieser Use Cases auch andere Anforderungen hinsichtlich Latenzzeit zugrunde, die mit einem Sprachmodell nicht realisierbar sind. Dennoch gibt es auch hier langsame Prozesse, denen KI-Sprachmodelle - auch wenn sie nun mehrere Sekunden brauchen - zu einen enormen Speed in der Produktion verhelfen könnten. Und dabei kommt es nicht auf die Auswahl eines speziellen Foundation-Modells an - die sich ohnehin früher oder später ähneln werden -, sondern auf die Experimentierfreude.

Natürlich sollte man nicht kopflos auf künstliche Intelligenz setzen, aber eben auch nicht erst loslegen, wenn ein Konzept von A bis Z zu Ende geschrieben ist. Dass andere Länder in diesem Punkt etwas wagemutiger oder weniger kritisch sind, ist mitunter auch kulturell bedingt. Aber: Künstliche Intelligenz sehen die meisten, die mit Kreativität und Wissen arbeiten, als Bedrohung an. Eine Bedrohung, die es bislang in dieser Form nicht gab. Umso wichtiger sind bei der Einführung dieser Technologien neben einer intensiven Sensibilisierung auch ein Changemanagement, indem verstärkt sozialorganisatorische Aspekte betrachtet werden, die sich technologisch nicht lösen lassen.

Informationen zu den Partner-Paketen der Studie 'Applied AI 2023'