Wozu braucht die Menschheit 5G?
5G soll ab 2020 die tausendfache Wireless-Kapazität in die Mobilfunknetze bringen. Das ermöglicht dann: 100 Milliarden Mobilfunkverbindungen für Menschen und Maschinen gleichzeitig. 10 Gbit/s auf jedem Endgerät. Pings unterhalb von einer Milli-Sekunde. Neunzig Prozent weniger Energieverbrauch pro Mobilfunkdienst. 1000mal weniger Energieverbrauch pro übertragenem Bit in den Endgeräten, auch um deren Akkuverbrauch zu reduzieren. Und daraus resultierend: Neue Anwendungen und Geschäftsmodelle rund um das drahtlose, superschnelle 5G-Cloud-Computing.
Tausendfache Mobilfunk-Kapazität mit 5G
Um 5G zu realisieren, braucht man neue Funkstationen und Endgeräte mit viel mehr MIMO-Antennen als heute, eine viel höhere geografische Dichte von Basis-Stationen mit viel kleineren Funkradien, sowie viel breitere Frequenz-Spektren in der Luft, als heute für LTE verfügbar sind, meinte etwa Dr. Wen Tong, der profilierteste 5G-Vordenker von Huawei, Inhaber von 180 US-Patenten und Chef von 700 Huawei-Forschern bereits im Februar 2014.
5G soll ein enormes Spektrum von 300 MHz bis 300 GHz flexibel nutzen können. Zum Vergleich: LTE nutzt in Deutschland gerade mal drei fixe Frequenz-Blöcke bei 800 MHz, 1800 MHz und 2600 MHz. Die restlichen 297 GHz sind für den terrestrischen Mobilfunk noch gar nicht aktiviert.
Natürlich sollen die neuen 5G-Techniken auch kreuz- und rückwärts-kompatibel zu den heute verbreiteten Funksorten 3G, 4G und WiFi sein. Die meisten User wollen ja nicht ständig neue Endgeräte kaufen.
Ab wann weitere Frequenzen für das drahtlose Internet versteigert werden, ist nicht zuletzt eine Frage der Politik. Deshalb kamen auch mehrere EU-Politiker aus Brüssel zum 5G-Kongress nach München. Daneben wird auf der World Radiocommunication Conference 2015 (WRC-15) der ITU vom 2. bis 27. November 2015 in Genf eine größere Einigung über die Verwendung weiterer Frequenzbänder für das mobile Internet erwartet.
Smartphones mit 10 Gbit/s
Der Endanwender soll mit 5G bis zu 10 Gigabit pro Sekunde auf sein Endgerät bekommen. Das heißt: Glasfaser-Speed beim Senden und Empfangen, nur eben per Mobilfunk. Mit solchen Bandbreiten werden auch Video-Streamings und Tele-Konferenzen in 4K-Ultra-HD-Qualität von Smartphone zu Smartphone möglich. Das gebogene 6-Zoll-Smartphone LG G Flex etwa kam schon im Februar 2014 mit einer Video-Kamera mit Ultra-HD-Aufzeichnung von 3.840 x 2.160 Pixel auf den Markt. Weitere wie das LG G3 folgten. Will man den 4K-UHD-Stream aber mobil senden und empfangen, so braucht man dazu idealerweise drahtlose 5G-Netze.
Zum Vergleich: UMTS kam anno 2004 mit 0,384 MBit/s auf den deutschen Markt. Die ersten Siemens-UMTS-Video-Handys waren damals, vor zehn Jahren, noch so dick wie eine Faust, hatten winzige und gering auflösende Video-Displays und wurden im Betrieb recht heiß. Doch danach ging es rasant weiter: HSDPA, HSUPA, HSPA, DC-HSPA, und dann 4G-LTE:
LTE-Cat3-800MHz wurde seit Dezember 2010 mit bis zu 50 MBit/s auf dem Lande kommerziell ausgerollt. Dann brachte die Telekom LTE-Cat3-1800MHz mit bis 100 MBit/s in über hundert deutsche Städte. Seit Herbst 2013 wird auch LTE-Cat4 mit 150 Megabit pro Sekunde von Telekom und Vodafone hierzulande ausgerollt. Außerdem fahren O2 (München) und Vodafone (Dresden) seit Ende 2013 bis zu 226 Mbit/s schnell LTE-Cat6-Netze als Piloten. Im weiteren Verlauf des Jahres 2014 wird man auch LTE bis 300 Megabit im deutschen Felde sehen, allerdings nur an bestversorgten Standorten.
5G-Reaktionszeiten von unter einer Millisekunde
Die bisherige 5G-Forschung gibt Grund zur Annahme, dass man die Ping-Zeiten in Mobilfunknetzen auf unter eine Millisekunde herunter bringen kann. Beim Surfen oder Business-Cloud-Computing würde sich das extrem zackig anfühlen und die Akzeptanz der Cloud vermutlich sehr verbessern. Bei der Wireless-Kommunikation zwischen schnell bewegten Fahrzeugen - Stichwort Connected Car - wären rasante Reaktionszeiten sogar noch wichtiger, um etwa Kollisionen zu vermeiden.
Zum Vergleich: Heute in der Praxis üblich sind Reaktionszeiten von LTE zwischen 30 und 80 Millisekunden. Diese fühlen sich beim Surfen zwar auch schon zackig an, für schnelle Fahrzeuge mit automatischen Lenk- und Bremsmanövern würde es hier allerdings schon eng. Hinzu kommt, dass das Handy, die vernetzte Maschine oder das vernetzte Fahrzeug bei künftigen Nutzungsszenarien bis auf weiteres auch noch zwischen (!) verschiedenen Funksorten wie 3G, 4G und WiFi hin- und her schalten muss. Solche Schaltvorgänge dauern heute manchmal mehrere Sekunden. Auch hier arbeiten Huawei und Konsorten auf ein "Zero-Second-Switching" hin: Maximal 10 Millisekunden soll die Umschaltung zwischen 4G, 5G und WiFi in absehbarer Zukunft nur noch dauern, damit der User nichts mehr davon merkt.