GenAI-basierte Technologien bergen branchen- und regionenübergreifend ein immenses Potenzial und bieten Fähigkeiten, die von herkömmlichen Machine-Learning-Algorithmen oder neuronalen Netzen in Breite und Tiefe nur schwer erreicht werden können.
Wie der "GenAI ARC Survey 2023" von IDC ergab, evaluieren oder implementieren daher auch Fertigungsunternehmen aktiv GenAI-Lösungen. Der Studie zufolge haben rund 30 Prozent der befragten europäischen Unternehmen bereits in nennenswertem Umfang in generative künstliche Intelligenz investiert und Ausgaben für Schulungen, den Kauf von GenAI-basierter Software und Beratung geplant. Knapp 20 Prozent führen erste Modellversuche und gezielte Proof of Concepts durch, haben aber noch keinen Investitionsplan erstellt.
Aus Sicht der Analysten deuten diese Ergebnisse auf ein stetiges Wachstum bei der Einführung von GenAI-basierten Werkzeugen und Lösungen in der Fertigungsindustrie hin. Nachdem OpenAI im vergangenen Jahr mit ChatGPT einen regelrechten GenAI-Hype ausgelöst habe, gingen die Unternehmen aber nun pragmatischer vor und nutzten die vermeintliche Wundertechnologie, um aktuelle Herausforderungen wie Arbeitskräftemangel, Qualifikationsdefizite, Sprachbarrieren, Datenkomplexität, Compliance und mehr zu bewältigen, so IDC in einem Blogbeitrag.
In der Fertigung konzentriert sich der Einsatz von GenAI-basierten Werkzeugen und Lösungen laut IDC insbesondere auf die folgenden vier Schlüsselbereiche:
Erstellung von Inhalten: GenAI-Algorithmen ermöglichen die automatische Erstellung von Berichten auf der Grundlage vordefinierter Parameter und Dateneingaben.
Verbesserung der Benutzeroberfläche: Die Integration von KI-Chatbots in Benutzeroberflächen soll eine intuitivere und interaktivere Kommunikation zwischen Benutzern und Systemen ermöglichen.
Wissensmanagement: GenAI erleichtert das Wissensmanagement durch die Bereitstellung von Copilot-Diensten, die den Nutzern helfen, auf große Daten- und Informationsmengen zuzugreifen und diese zu interpretieren.
Software und Bereitstellung: GenAI wird in Anwendungen wie der Codegenerierung eingesetzt, um die Erstellung von Softwarecode zu automatisieren und damit Entwicklungsprozesse zu rationalisieren.
Wie die Anwendungsbereiche zeigen, kann GenAI dabei helfen, Mitarbeiter anzuleiten und so den Herausforderungen einer alternden und/oder unqualifizierten Belegschaft zu begegnen. Laut IDC müssten sich Unternehmen jedoch bei der Einführung mit Blick auf die im Hintergrund ablaufenden IT-Prozesse mit Problemen wie Datenlecks, Bias und der Aufrechterhaltung der Souveränität befassen. Diese Fragen müssten sorgfältig geklärt werden, um einen verantwortungsvollen und ethischen Einsatz generativer künstlicher Intelligenz zu gewährleisten.
Rahmenbedingungen zur GenAI-Implementierung
Um das Potenzial von GenAI-Piloten voll auszuschöpfen, benötigen Fertigungsunternehmen demnach ein umfassendes Rahmenwerk, das Prozesse und Richtlinien umfasst. Zu den wichtigsten Maßnahmen gehören nach Ansicht der Analysten:
Praktiken für Datenaustausch und Betrieb: Unternehmen sollten vorrangig Praktiken einführen, die die Datenintegrität für intern oder in Zusammenarbeit mit Dritten entwickelte LLMs sicherstellen, empfiehlt IDC. Dies würde sicherstellen, dass die Daten, die in GenAI-Modellen verwendet werden, korrekt, zuverlässig und ethisch einwandfrei sind.
Unternehmensweite Richtlinien für Transparenz: Es sollten Richtlinien erstellt werden, um die Transparenz zu bewerten und die Verwendung von GenAI-Code, Daten und trainierten Modellen im gesamten Unternehmen zu verfolgen.
Verpflichtende GenAI-Trainingsprogramme: Es sollten obligatorische Trainingsprogramme durchgeführt werden, um das Bewusstsein für GenAI-Fähigkeiten und ethische Überlegungen bei bestimmten Mitarbeitergruppen zu schärfen. Auf diese Weise könnten Unternehmen sicherstellen, dass ihre Mitarbeiter wissen, wie sie GenAI-Technologien verantwortungsvoll einsetzen können.
Um diese Bedenken auszuräumen, setzen viele Unternehmen auch darauf, formelle KI-Governance-/Ethik-/Risikoräte auf- respektive auszubauen, die den ethischen Einsatz von GenAI überwachen und die Risiken in Bezug auf Datenschutz, Manipulation, Voreingenommenheit, Sicherheit und Transparenz mindern sollen.
Die Qual der Wahl
Die Strategien zur Auswahl der richtigen Lösung für den richtigen Anwendungsfall können sehr unterschiedlich sein. Die Möglichkeiten bei der Auswahl und Einführung sind vielfältig, etwa:
Lösungen von der Stange,
KI-Assistenten oder
KI-Agenten.
Eine häufig genannte Herausforderung bei solchen Projekten sei die Auswahl des optimalen LLM für unternehmensspezifische Anwendungsfälle aus einer Vielzahl von Möglichkeiten, erklärt Jan Burian, Head of IDC Manufacturing Insights EMEA und Autor des Blogbeitrags. Da ständig neue Modelle und Lösungen auftauchen und verfügbar würden, könne diese Aufgabe entmutigend sein: "Der Auswahlprozess umfasst in der Regel eine gründliche Marktrecherche, Präsentationen von Anbietern und interne Diskussionen über die technologischen Rahmenbedingungen für aktuelle und zukünftige Anwendungsfälle."
Und obwohl die Auswahl der richtigen Lösung ein wichtiger Faktor sei, hänge der Erfolg von GenAI letztlich von der Qualität und Quantität der verwendeten Daten ab, so Burian. Die Kuratierung eines vielfältigen und ausreichenden Datensatzes sei entscheidend, um unverzerrte Ergebnisse zu gewährleisten und die Effektivität von GenAI-Lösungen zu maximieren. Das Datenmanagement bleibe daher ein Eckpfeiler für den erfolgreichen Einsatz von GenAI-Technologien.