Unternehmen sammeln Daten und werten sie für ihre eigenen Planungen aus. Informationen, die beispielsweise dem Internet der Dinge (IoT) entspringen. Mit Hilfe von Algorithmen der Künstlichen Intelligenz (KI) wie etwa Machine Learning (ML) generierte Prognosen nutzen die Firmen entweder nur für sich intern oder aber sie tauschen die Erkenntnisse extern aus und handeln damit auf elektronischen Marktplätzen. Wie das aussieht, verdeutlicht ein einfaches Beispiel: Niemand käme auf die Idee, sich die Regenwahrscheinlichkeit für das nächste Wochenende selbst aus Rohdaten zu berechnen. Zwar sind die Messwerte für jedermann verfügbar. Einfacher ist es aber, mit den vorbereiteten Services zu arbeiten, wie sie etwa Wetter-Apps anbieten. Data-Hubs machen Dienste ähnlichen Charakters in anderen Anwendungsbereichen möglich.
Datenmarktplätze bringen Anbieter und Anwender zusammen
Ob Fabriken, Flughäfen oder Spediteure: Es ist zu untersuchen, welche Daten sich zum Handeln auf Marktplätzen anbieten könnten. Welche Informationen lassen sich ökonomisch nutzen? Wie lassen sich übergreifende Zusammenhänge erkennen?
Wie das konkret aussehen kann: Beispielsweise möchte ein Unternehmen aus den Bereichen Handel oder Energie für sein Kerngeschäft Umweltdaten von vernetzten Fahrzeugen nutzen. Geeignete Datensätze bietet ein Fahrzeughersteller auf dem Marktplatz an. Dazu könnten etwa Live-Telematik- oder Sensor-Informationen über Standorte, Verkehrsstau, Niederschläge, Temperaturen und Lichtverhältnisse zählen. Die Daten der vernetzten Fahrzeuge kann das Unternehmen nutzen, um kurzfristig sehr regionale Prognosen zu erstellen und sein Kerngeschäft entsprechend dem durch das aktuelle Wetter hervorgerufenen Bedarf zu optimieren.
Unternehmensübergreifende Erkenntnisse aus Daten
Ein solcher Data Hub bringt aber nicht nur Datenproduzenten und -konsumenten zusammen, sondern auch Drittanbieter und Tools. Gewissermaßen wie Apps und Nutzer im App-Store zusammenfinden, finden sich dann Künstliche-Intelligenz-Applikationen und Anwender.
Beispielsweise könnten Fabriken bestimmte Maschinendaten wie etwa zu Energieverbrauch, Verschleiß oder Nutzungsintensität ausgewählten Nutzerkreisen zur Verfügung stellen. Denn ob Metall- oder Werkstoffbearbeitung - insbesondere die Hersteller der Produktionsmaschinen sind an diesen Daten interessiert. Sie nutzen diese etwa, um übergreifende Erkenntnisse zu gewinnen. Warum fallen einzelne Bauteile bei gewissen Bearbeitungsschritten häufiger aus als sonst? Wie lassen sich die Fertigungsmaschinen modifizieren oder die nächste Robotergeneration verbessern?
Auch den Fabriken helfen die Maschinendaten aus externen Quellen. Zum einen lernen sie, ob womöglich auch andere Einstellungsdaten bestimmter Produktionsmaschinen vorteilhaft wären. Zum anderen lassen sich Abhängigkeiten in laufenden Fertigungsverfahren erkennen. Das Ziel: das Produktionsergebnis selbst zu optimieren. Denn industrielle Abläufe unterliegen vielfältigen Einflussfaktoren, die sich nur schwer beherrschen lassen. So schwankt nicht nur die Güte eines Rohstoffs, sondern auch die Temperatur und Luftfeuchtigkeit in der Fabrikhalle. Individuelle Faktoren, die sich direkt auf die Produktion und die Produktgüte auswirken.
Beispiel Duschgel: Wie fest oder flüssig das Körperpflegemittel wird, stellt sich erst Tage nach der Produktion heraus. Verfehlt das Erzeugnis die gewünschte Viskosität, sind komplette Chargen zu entsorgen. Abhilfe können genau die Anwendungen schaffen, wie sie ein Marktplatz bereitstellt. Neuronale Netze analysieren die Sensorwerte, bilden Modelle und erkennen so Korrelationen, die Wirkzusammenhänge zwischen einzelnen Parametern aufdecken. Ausschuss lässt sich reduzieren und die gewünschte Produktqualität erzielen.
Datensicherheit beachten
Um systematisch eigene Anwendungsmöglichkeiten zu evaluieren, ist es für die Unternehmen zuerst einmal entscheidend, eine übergeordnete Vision und dazu konkrete Use Cases zu definieren.
Wo sich nicht nur Datenströme übergreifend verzahnen, sondern auch Prognosen und Modelle austauschen lassen sollen, darf Schutz nicht fehlen. Neben hohen Sicherheitsstandards und modernsten Verschlüsselungstechnologien kann künftig auch die Blockchain-Technologie einen interessanten Lösungsansatz bieten, der auf Data Hubs für Sicherheit sorgen kann. So könnte sie Manipulationen durch unberechtigte Dritte ausschließen und weiterhin auch den originären Ursprung von Daten gewährleisten.
- Blockchain
Blockchain wird in den kommenden Jahren zur Schlüsseltechnologie in der IT werden. - (1) Transaktion
Die Transaktion ist die elementare Grundeinheit der Blockchain. Zwei Parteien tauschen Informationen miteinander aus. Dies kann der Transfer von Geld oder Vermögenswerten, der Abschluss eines Vertrags, eine Krankenakte oder eine Urkunde sein, die digital gespeichert wurde. Transaktionen funktionieren im Prinzip wie das Versenden von E-Mails. - (2) Verifizierung
Die Verifizierung prüft, ob eine Partei die entsprechenden Rechte für die Transaktion hat. Die Prüfung erfolgt augenblicklich oder es wird in eine Warteschlange geschrieben, die die Prüfung später durchführt. An dieser Stelle werden Knoten, also Computer oder Server im Netzwerk, eingebunden und die Transaktion verifiziert. - (3) Struktur
Die Transaktionen werden zu Blöcken zusammengefasst, wobei diese mit einer Hash-Funktion als Bit-Nummer verschlüsselt werden. Die Blöcke können durch die Zuweisung des Hash-Wertes eindeutig identifiziert werden. Ein Block enthält einen Header, eine Referenz auf den vorhergehenden Block und eine Gruppe von Transaktionen. Die Abfolge der verlinkten Hashes erzeugt eine sichere und unabhängige Kette. - (4) Validierung
Bevor die Blöcke erzeugt werden, müssen die Informationen validiert werden. Das am meisten verbreitete Konzept für die Validierung von Open-Source-Blockchains ist das „Proof of Work“-Prinzip. Dieses Verfahren stellt in der Regel die Lösung einer schweren mathematischen Aufgabe durch den Nutzer beziehungsweise dessen Computer dar. - (5) Blockchain Mining
Der Begriff Mining stammt aus der Bergbau und meint das „Schürfen“. Bei diesem Vorgang wird der Block erzeugt und gehasht. Um zum Zug zu kommen, müssen die Miner ein mathematisches Rätsel lösen. Wer als Erstes die Lösung hat, wird als Miner akzeptiert. Der Miner erhält für seine Arbeit ein Honorar in Form von Kryptowährung (Bitcoin). - (6) Die Kette
Nachdem die Blöcke validiert wurden und der Miner seine Arbeit verrichtet hat, werden die Kopien der Blöcke im Netzwerk an die Knoten verteilt. Jeder Knoten fügt den Block an der Kette in unveränderlicher und unmanipulierbarer Weise an. - (7) Verteidigung
Wenn ein unehrlicher Miner versucht, einen Block in der Kette zu ändern, so werden auch die Hash-Werte des Blockes und der nachfolgenden Blöcke geändert. Die anderen Knoten werden diese Manipulation erkennen und den Block von der Hauptkette ausschließen.
Experten erwarten, dass die Bedeutung derartiger Datenumschlagplätze wächst. Losgelöst von Cloud-Plattformen, Anbietern und international agierenden Herstellern sollen sich Data-Hubs künftig auch miteinander verbinden können. Dann sind digitale Informationen auch global nutzbar. Dabei gilt es, national unterschiedliche Datenschutzregelungen zu beachten.
Beispiel China: Das Land hat eine eigene Gesetzgebung für Maschinendaten, die es in Anwendungen zu beachten gilt. In Europa wiederum liegt der Hauptfokus auf dem Schutz personenbezogener Daten und dem freien Datenverkehr innerhalb der EU und des Europäischen Binnenmarktes.
Geeignete Ökosystem schaffen
Fortschritte in der Rechen- und Speichertechnologie, wie sie sich in den Cloud-Rechenzentren der Anbieter zeigen, machen derartige Handelsplattformen erstmals möglich. Hier findet sich die skalierbare Rechenpower, die KI-Anwendungen verlangen. Für die Daten selbst sorgt unter anderem das Internet der Dinge: Bereits jetzt sind Milliarden Geräte miteinander vernetzt - Smart Home Services und Wearables aus dem Consumer-Bereich wie auch vernetzte Fahrzeuge oder Industrieroboter aus dem Business-Bereich. Neue Mobilfunknetze wie 5G werden dafür sorgen, dass mehr Daten immer schneller und mit deutlich verkürzten Latenzzeiten in Rechenzentren und Data Hubs zur Verarbeitung bereitstehen.
Bereits am Start sind schon komplett virtuelle digitale Geschäftsmodelle, die ohne physikalische Assets auskommen; also etwa ohne Gebäude, Maschinen oder Anlagen, in denen sonst Kapital gebunden ist. Beispiel Uber: Eine App bringt Taxis und Kunden zusammen. Statt selbst eine Flotte zu unterhalten und Fahrer zu beschäftigen, vermittelt Uber nur den Service. Ein Trend, der sich auch in der Logistik erkennen lässt: Hier entstehen aktuell vergleichbare, "uberisierte" Geschäftsmodelle. Entscheidend für den Erfolg sind digitale Plattformen und intelligente Architekturen. (hal)