Big Data

Data Scientists - auf der Suche nach den Schätzen im Datenberg

13.04.2015
Von 
Peter Ilg ist freier Journalist in Aalen.
Big Data - das sind gewaltige Datenmengen, angefallen in elektronischen Geschäftsprozessen, automatisch erhoben von Maschinen, generiert von Nutzern in Social Media. Das ist pures Gold. Analysten veredeln die Daten, indem sie aus der Masse die Informationen herausfiltern, die den Unternehmen dienen.

Big Data - das sind gewaltige Datenmengen, angefallen in elektronischen Geschäftsprozessen, automatisch erhoben von Maschinen, generiert von Nutzern in Social Media. Das ist pures Gold. Analysten veredeln die Daten, indem sie aus der Masse die Informationen herausfiltern, die den Unternehmen dienen.

Alle zwei Jahre verdoppelt sich das Datenvolumen, und nur drei Prozent der Daten lassen sich über Schlagworte suchen. Genug Arbeit also für Data Scientists, ein Berufsbild mit Zukunft.
Alle zwei Jahre verdoppelt sich das Datenvolumen, und nur drei Prozent der Daten lassen sich über Schlagworte suchen. Genug Arbeit also für Data Scientists, ein Berufsbild mit Zukunft.
Foto: McIek - Shutterstock.com

Das Volumen gespeicherter Daten wächst weltweit rasant. Und immer häufiger gehen Unternehmen dazu über, mit Hilfe von Datenanalysten aus gigantisch großen Datenmengen entscheidungsrelevante Informationen zu gewinnen. "Data Scientists werten beispielsweise Kundenverhalten aus, um passgenaue Angebote machen zu können", sagt Professor Dr. Christian Koot. Er ist Studienkoordinator des berufsbegleitenden Masterstudiengangs Wirtschaftsinformatik mit einem Schwerpunkt 'Big Data und Business Analytics' an der Hochschule Aalen. "Wir haben die entsprechenden Inhalte bewusst in den Wirtschaftsinformatik-Studiengängen angesiedelt, da Big Data technisches und betriebswirtschaftliches Wissen einschließlich Statistik voraussetzt, um große Datenmengen analysieren und interpretieren zu können."

Auf eine Bestellung bei Amazon hin folgen passende Produktempfehlungen. Das ist das Werk von Data Scientists. Web-Shops ist eines ihrer Tätigkeitsfelder. Andere sind im Kreditgeschäft, dem Risikomanagement von Versicherungen oder Industrie 4.0. Indem Maschinendaten ausgewertet werden, lassen sich Wartungen planen und dadurch Maschinenstillstände vermeiden. Versicherungen schöpfen Datenquellen aus, um ihre Kraftfahrzeugversicherung zu tarifieren. Und im Finanzbereich werden Börsen- und Unternehmenswerte gebündelt und kombiniert, um verlässliche Informationen für die Entwicklung des Kapitalmarkts vorherzusagen. Das geschieht in Hochgeschwindigkeit durch In-Memory Datenbanken. Diese Technologie hinterlegt Daten im Arbeitsspeicher. Dort geht die Suche viel schneller als auf dem klassischen Speicherort, den magnetischen Festplatten. In Verbindung mit Analysewerkzeugen führt das zu rasend schnellen Ergebnissen.

Big Data bewegt sich langsam aber sicher aus seiner Nische hin zum Mainstream der täglichen Unternehmenspraxis. Aber viele Unternehmen schöpfen die Potentiale der vorhandenen Daten noch nicht effektiv aus. "Häufig mangelt es an einer ganzheitlichen Strategie und an geeigneten Analysemethoden. Außerdem müssen ganz praktische Probleme wie die Knappheit an geeigneten Big-Data-Spezialisten oder die Frage nach den geeigneten technischen Voraussetzungen gelöst werden, um die Möglichkeiten von Big Data voll auszuschöpfen", sagt Olaf Riedel, er ist Partner bei Ernst & Jung. Die Beratungsgesellschaft hat eine Studie zum Thema erstellt, mit dem Ergebnis: indem Daten professionell genutzt werden, lassen sich Umsätze deutlich steigern. Data Scientist machen Unternehmen erfolgreicher.

"Big Data ist ein junges Berufsfeld und Data Scientists meist Quereinsteiger aus Informatik, Mathematik und Statistik", sagt Marc Beierschoder, Verantwortlicher für Analytics beim IT-Dienstleister Accenture in Kronberg im Taunus. Data Scientist brauchen nach seinen Angaben ein ausgeprägtes mathematisch-analytisches Talent, gute Kenntnisse von statistischen Methoden, ein tiefes Verständnis für digitale Methoden und sie müssen Zusammenhänge in Daten identifizieren können. "Nur dann können sie Aussagen treffen, die dem Unternehmen dienen." Das können höhere Einnahmen, effizientere Abläufe oder mehr Kundentreue sein.

Entscheidend ist die Datenaufbereitung

Sind unsere Kunden der Marke treu? Will ein Unternehmen hierauf eine Antwort, kann Accenture sie liefern. Ein Projektteam arbeitet zunächst konzeptionell und geht den Fragen nach: welche Daten liegen vor, welche Aussagen können wir treffen und worin liegt der Wert fürs Unternehmen? Das Team bediente sich aus verschiedenen Quellen wie den Systemen fürs Kundenbeziehungsmanagement, Unternehmenssteuerung und externen Quellen wie Social Media. Je mehr unterschiedliche Daten zur Verfügung stehen, umso genauer wird das Ergebnis. Doch Quantität führt nicht automatisch zu einer höheren Qualität der Analysen. Das Brauchbare muss herausgefiltert werden. Das macht Analysesoftware nach genauen Vorgaben. Entscheidend für die Qualität der Ergebnisse ist die Datenaufbereitung. Eine gute Qualität liefern vollständige, richtige und konsistente Daten.

Bei der Allianz liegen Datenkomprimierung und Analyse in einer Hand. Mihael Ankerst, 42, leitet das Referat Kundendaten und Statistik. "Wir verdichten Kundendaten entlang von Geschäftsvorfällen, analysieren diese und stellen darauf aufbauend Überlegungen zum Bedarf unserer Kunden an." Ankerst hat Informatik studiert und in dieser Disziplin promoviert. Sein Studienschwerpunkt war Data-Mining, das ist die Analyse großer Datenmengen mit dem Ziel, Zusammenhänge zu erkennen. Darüber hat er seine Diplomarbeit geschrieben und promoviert. Anschließend hat er vier Jahre in den USA als Datenanalyst gearbeitet.

Seit 2005 ist er bei der Allianz und hat acht Mitarbeiter im Team, darunter Informatiker, Mathematiker, Statistiker. Sie analysieren Kundendaten unter dreierlei Gesichtspunkten: Kunden werden segmentiert, um Zielgruppen oder Untergruppen zu erkennen, damit die passend angesprochen werden können. Der zielgruppenspezifischen Ansprache dient auch die Prognose von Kundenverhalten, die zu dem Ergebnis führt, welche Kunden welchen Bedarf haben. Und schließlich werden Kunden und deren Verhalten statistisch ausgewertet, um eine Erklärung dafür zu finden, warum die Entwicklung in die eine oder andere Richtung geht.

Mihael Ankerst, Allianz: "Unsere Mitarbeiter brauchen methodisches Wissen, um geeignete statistische Verfahren zur Datenanalyse einzusetzen.
Mihael Ankerst, Allianz: "Unsere Mitarbeiter brauchen methodisches Wissen, um geeignete statistische Verfahren zur Datenanalyse einzusetzen.
Foto: McIek - Shutterstock.com

Daten, die dafür zugrunde gelegt werden, sind die 20 Millionen Privatkunden der Allianz Deutschland und externe Quellen. Analysiert wird mithilfe von Software anhand vorgegebener Kriterien. Ankersts Mitarbeiter müssen verstehen, was eine Versicherung ist und wie sie funktioniert. Sie brauchen methodisches Wissen, um geeignete statistische Verfahren zur Datenanalyse einzusetzen und sie müssen verstehen, wie die Versicherungsrealität in Daten abgebildet ist. Software und Techniken, die zur Datenanalyse genutzt werden sind SQL von Oracle, In-Memory-Technologien und die Programmiersprachen SAS und R. "Bei den persönlichen Skills steht Kommunikation über allem, weil vieles in unserem Job über den Austausch mit Kollegen geschieht."

Auch in anderen Abteilungen bei der Allianz arbeiten Datenanalysten, beispielsweise bei den Aktuaren zur Kalkulation von Tarifen und in der IT. "Grob geschätzt kommen etwa 80 zusammen", sagt Ankerst. Und der Trend sei eindeutig steigend, weil das Kerngeschäft der Versicherung auf Daten beruht und die Digitalisierung unserer Gesellschaft stark zunimmt.

Big Data

Die Menge an Daten, die erstellt, vervielfältigt und konsumiert werden, wird 2020 bei etwa 40 Zettabytes liegen. Das ist eine Zahl mit 21 Nullen. Innerhalb von zehn Jahren soll die Datenmenge dann um das 50-fache gestiegen sein, schätzen Marktbeobachter von IDC und des Speichersystem-Herstellers EMC. Und es werden immer mehr: Alle zwei Jahre verdoppelt sich das Datenvolumen. Seit 2002 werden Daten häufiger digital als analog gespeichert. Seitdem hat auch die Vielfalt der Datentypen zugenommen. Dazu gehören Video, Audiodateien, Texte in E-Mails, Nachrichten in Social Media, Suchanfragen bei Google, Anzeigen auf Plattformen für den Verkauf gebrauchter Autos oder Einträge in Foren zu Gesundheitsfragen. Nur drei Prozent der Daten lassen sich über ein Schlagwort suchen. Um rasch fündig zu werden, braucht es eine leistungsfähige Technik, unter anderem In-Memory-Computer. Diese Rechner haben gigantisch große Arbeitsspeicher. Auf der Suche nach wichtigen Informationen durchforsten sie nicht mehr mühsam Festplatten, denn die Daten liegen abrufbereit im Arbeitsspeicher.