Analytische Ansätze waren bisher vor allem mit Technologien wie Data Warehousing und Business Intelligence (BI) verknüpft. Ihre Ergebnisse haben vielen Unternehmen geholfen, ihre geschäftlichen Strategien umzusetzen oder herauszufinden, was ihre jeweilige Klientel erwartet und was ihr weniger gefällt. Leisten konnten sich das aber nur sehr zahlungskräftige Unternehmen oder Organisationen. Zudem sind die Programme alles andere als leicht zu implementieren und zu bedienen, und die Auswertungen dauern eine längere Zeit – von Tagen bis zu Wochen.
Big Data – angetrieben von Herstellern wie EMC, HP oder IBM, die dieses Marktsegment besetzen wollen – verspricht dagegen schnellere und weniger aufwändig zu erzielende Resultate. Im Gesundheitssektor ist vor allem IBM bisher mit Initiativen hervorgetreten. In den USA, die dem "alten Kontinent“ auch auf diesem IT-Feld ein Stückchen voraus sind, hat das iHT2 (The Institute for Health Technology Transformation) vor kurzem eine Studie zu den Aussichten von Big Data in der Gesundheitsindustrie veröffentlicht. Die Studie ist auch von zahlreichen Fachleuten aus Krankenhäusern und anderen medizinischen Institutionen unterstützt worden.
- Erfahrungen beim Einsatz von Big-Data-Techniken
Es ist nicht so, dass noch niemand Big-Data-Projekte angegangen wäre. Es gibt sogar einige Beispiele von Unternehmen, die solche Projekte mit Erfolg absolviert haben. - Deutsche Welle
„Essenziell auch für Big-Data-Projekte sind eine klare Aufgabenstellung, Fokus auf die Lösung und die Nutzer dieser Lösung (weniger auf neueste Informationstechnik) und nicht zuletzt auch ein Gespür für Usability und Funktionsumfang eines Reporting-/Analyse-Dashboards. Weniger ist hier meistens mehr.“ - DeutschlandCard GmbH
„Nur ein minutiöser Migrationsplan mit mindestens einer kompletten Generalprobe inklusive Fallback-Test sichert die Betriebssicherheit einer solch komplexen Applikation mit ihren zahlreichen Schnittstellen zu externen Partnern.“ - Schukat Electronic
„Big Data Analytics ist nicht nur eine Herausforderung für Großunternehmen. Auch der Mittelstand muss sich immer mehr mit diesem Thema beschäftigen, um im internationalen Wettbewerb erfolgreich zu sein. Das Anwendungsbeispiel verdeutlicht den Nutzen im Vertrieb. Aber beispielsweise auch in der Produktion mit Sensordaten etc. gibt es vielfältige Szenarien in den Fachabteilungen.“ - Otto Versand
„Wir haben erkannt, dass für unsere Anforderungen ein selbstlernendes System notwendig ist, das sich stetig ändernde Einflussfaktoren wie Ansprache und Artikel- Ranking oder im Printbereich Seitenanteil und Katalogausstoßmenge berücksichtigt. Damit steigt unsere Prognosequalität kontinuierlich, und die prognostizierten Absatzmengen werden immer präziser. Außerdem können wir uns frühzeitig auf künftige Entwicklungen einstellen.“ - Macy‘s
„Der Business-Nutzen zeigt sich erst, wenn Prozesse, die aufgrund fehlender Möglichkeiten bewusst eingeschränkt waren, verbessert werden. In diesem Fall ist es die früher gar nicht mögliche, sehr viel häufigere Preisoptimierung im Gesamtsortiment. Auch können nun sehr viel aktuellere Abverkaufszahlen mit in die Analyse einbezogen werden.“ - Telecom Italia
„Bestehende Segmentierungsmodelle können um rollenbasierte Modelle erweitert werden, indem der Einfluss auf das soziale Umfeld durch Leader, Follower etc. verdeutlicht wird. Leader gelten als Kommunikations-Hubs und haben einen starken Entscheidungseinfluss auf ihr Umfeld. Marketing- Strategien und Ansätze zur Kundenakquise können durch SNA optimiert werden. Eigenschaften der Communities, Wechsel zwischen den Communities und die Identifikation von Teilnehmern in Schnittstellenbereichen ermöglichen Rückschlüsse auf neue Kundensegmente und Zielgruppen.“ - Netapp
„Das auf Apache Hadoop basierende System arbeitet sicher, zuverlässig und höchst performant. Die Java-basierende Plattform verwendet offene Technologien und ist somit flexibel erweiterbar. Kunden vermeiden so bei niedrigen Betriebskosten (TCO) ein Vendor-Lock-in.“ - Semikron GmbH
„Big-Data-Projekte sind komplex. Oft sind Unternehmen nicht in der Lage, ihre tatsächlichen Datenbestände für die geplanten Projektvorhaben hinsichtlich ihrer Volumenentwicklung abzuschätzen. Bei Semikron hat sich beispielsweise gezeigt, dass sie von einem viel größeren Datenvolumen ausgegangen sind, als es tatsächlich der Fall war. Bei dem durchgeführten Proof of Concept stellte sich heraus, dass zwar die Vielzahl an Daten, die in den typischen Produktionsprozessen anfallen, sehr hoch ist, nicht aber das Datenvolumen.“ - Vaillant Group
„Allein die Umstellung der Systemlandschaft auf innovative Big-Data-Architekturen aus technischer IT-Perspektive ergibt belastbare Business Cases zur Reduzierung des TCO. Noch deutlich übertroffen werden für Fachabteilungen die Resultate aus dem Mehrwert der neuen Lösungen und Möglichkeiten in Verbindung mit der drastischen Reduzierung der Bearbeitungszeiten durch die Anwender.“ - TomTom
„Um die kompletten Anforderungen des Kunden in Big- Data-Projekten erfüllen zu können, ist übergreifendes Know-how erforderlich, das die Konfiguration von Hard- und Software, das Tuning und technisches Consulting umfasst.“ - United Overseas Bank (Singapur)
„Entscheidend ist das Denken in Geschäftsprozessen. Wird nur ein Teil beschleunigt, der Gesamtprozess bleibt aber unangetastet, so lässt sich der Vorteil nicht realisieren. Sowohl das Daten-Management im Vorfeld als auch die Echtzeit-Nutzung der Echtzeit-Ergebnisse sind bestimmende Faktoren für den erfolgreichen Einsatz dieser neuen Lösung.“ - Xing
„In kürzester Zeit stellten sich positive Effekte bei Xing ein, vor allem eine deutliche Verbesserung bei den Analysen. Prozesse können durch die neue Lösung schneller entwickelt und Ad-hoc Anfragen zügiger beantwortet werden. Es sind keine langen Workarounds mehr notwendig, alle BI-Mitarbeiter nutzen das neue System effektiv. Die Komplexität und die Wartung des Systems wurden merklich verringert. Bei der Arbeit mit der neuen Lösung konnte eine steile Lernkurve seitens der Anwender verzeichnet werden, auch wird spürbar produktiver gearbeitet.“ - In eigener Sache:
Mit diesen Anwenderzitaten wollen wir Ihnen Lust machen auf das nächste Heft in unserer vierteiligen Quadriga-Reihe. Titelthema ist Big Data. Anwenderbeispiele, visionäre Konzepte und Meinungen runden das Thema ab. Auch auf die Megatrends Mobility, Cloud Computing und Social Media werden wir wieder eingehen. Erscheinungstermin: 10. Juni 2013.
5 Herausforderungen für Big Data
Nach einer Einführung, die grundsätzlich erklärt, was "Big Data“ eigentlich ist und bezwecken soll, widmen sich die Autoren den Herausforderungen („challenges“), die mit dieser Technologie verbunden sind. Big Data umfassen laut Studie vor allem diese fünf Kategorien:
-
Informationen aus Web- und Social-Media-Quellen (Facebook, Twitter, LinkedIn, Blogs, Gesundheitspläne, Webseiten oder Apps für Smart Phones);
-
Machine-to-Machine-Data, also Informationen von Sensoren, Messgeräten oder anderen Instrumenten – besonders interessant im medizinischen Umfeld;
-
Daten aus großen Transaktionen wie Gesundheitsabrechnungen oder sonstigen Quittungen, Belegen, Rechnungen oder Buchhaltungsunterlagen, die häufig in halb- oder in unstrukturierter Form vorliegen;
-
Biometrische Daten, zum Beispiel Fingerabdrücke, genetische Informationen, handschriftliche Aufzeichnungen, Röntgenunterlagen, medizinische Bilder, Puls-, Blutdruck- und ähnliche -Informationen;
-
Un- oder halbstrukturierte Dokumente wie KIS-Daten, Arztnotizen, E-Mails oder sonstige auf Papier festgehaltene Informationen.
Die im Gesundheitsbereich vorherrschenden Dokumentenarten wären insofern hervorragend geeignet für Big-Data-Auswertungen, während klassische BI-Analysen vorwiegend auf strukturierten Daten aus Datenbanken wie Oracle, DB2 oder anderen beruhen. Die Studie zählt zahlreiche Beispiele auf, in denen Big-Data-Auswertungen schon erfolgreich durchgeführt wurden.
Erste Erfolge beim Big-Data-Einsatz
Zu den erst ansatzweise gelösten Herausforderungen zählt die Studie zunächst die unzureichende Fähigkeit der medizinischen Institutionen, rasch ihre Unterlagen zur Verfügung zu stellen. Diese liegen entweder in zersplitterter, versteckter Form vor und es bedarf eines dedizierten Teams, sie überhaupt für Analysen aufzubereiten. Damit bestehen ähnliche Eingabeschwierigkeiten wie bei klassischen Data-Warehouse- oder BI-Lösungen, bei denen die Daten oft aufbereitet oder in lesbare Formate umgewandelt werden müssen.
Hinzu kommt, teilweise bedingt durch die staatlichen Gesundheitsreformen in verschiedenen Ländern, dass heute wesentlich mehr Daten als noch vor ein paar Jahren erzeugt werden. Diese "Datenflut“ zu bändigen, sprich in beherrschbare Formen zu bringen, ist für viele IT-Abteilungen kaum noch möglich. Hier sollten externe Dienstleister mit ihrer Expertise eingeschaltet werden.
Krankenhäuser und andere Institutionen verfügen nur in Ausnahmefällen über eine so ausgebaute und moderne IT-Infrastruktur, dass sie jederzeit alle erforderlichen Big-Data-Instrumente bereit hätten. Es wären also Investitionen in die Server- und Storage-Anlagen erforderlich, damit überhaupt analytische Datenzugriffe erfolgen können.
Ungeklärt sind ferner Datenschutz- und Privacy-Regelungen. Inwiefern sind überhaupt Patientendaten geeignet oder freigegeben, um sie per Analytics aufbereiten zu lassen? Was geschieht, wenn sie nach außen, im Extrem in Cloud-Umgebungen, verlagert werden? Wer ist im Schadensfall haftbar?
9 Strategiepunkte für Big Data im Gesundheitsbereich
Die Studie empfiehlt abschließend 9 Strategiepunkte, um erfolgreich in Richtung Big Data im Gesundheitssektor arbeiten zu können:
-
Stattliche Stellen mit einbeziehen (wegen Governance, Compliance, Datenschutz)
-
Externe Provider wegen ihrer Erfahrungen engagieren
-
Anreize bei den Mitarbeitern schaffen, dass sie Daten zur Verfügung stellen und an Auswertungen interessiert sind
-
Analytics in hauseigene Fortbildungsprogramme aufnehmen
-
Die verschiedenen Mitarbeitergruppen (Ärzte, Pfleger, kaufmännische Abteilungen, Management) getrennt ansprechen
-
Eventuell In-house-Lösungen gegenüber vorgefertigten Hersteller-Angeboten vorziehen
-
Dashboards und andere leicht verständliche Konsolen und Tools entwickeln
-
Rechtzeitig die Infrastruktur im Rechenzentrum modernisieren
-
Die gesamte interne Struktur überprüfen (und ändern), um die Qualität der Daten anzuheben
Die Studie steht hier zum kostenlosen Download bereit.
Dieser Artikel basiert auf einem Beitrag der CW-Schwesterpublikation CIO.de. (mhr)